
Entropy analysis of substitutive sequences revisited

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2001 J. Phys. A: Math. Gen. 34 9231

(http://iopscience.iop.org/0305-4470/34/43/309)

Download details:

IP Address: 171.66.16.98

The article was downloaded on 02/06/2010 at 09:22

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/34/43
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 34 (2001) 9231–9241 PII: S0305-4470(01)17972-2

Entropy analysis of substitutive sequences revisited

K Karamanos

Centre for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, CP 231,
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Abstract
A given finite sequence of letters over a finite alphabet can always be algo-
rithmically generated, in particular by a Turing machine. This fact is at the
heart of complexity theory in the sense of Kolmogorov and Chaitin. A rele-
vant question in this context is whether, given a statistically ‘sufficiently long’
sequence, there exists a deterministic finite automaton that generates it. In
this paper we propose a simple criterion, based on measuring block entropies
by lumping, which is satisfied by all automatic sequences. On the basis of
this, one can determine that a given sequence is not automatic and obtain
interesting information when the sequence is automatic. Following previous
work on the Feigenbaum sequence, we give a necessary entropy-based condi-
tion valid for all automatic sequences read by lumping. Applications of these
ideas to representative examples are discussed. In particular, we establish new
entropic decimation schemes for the Thue–Morse, the Rudin–Shapiro and the
paperfolding sequences read by lumping.

PACS numbers: 02.10.−v, 02.30.Lt, 05.45.−a, 05.70.−a, 65.20.+w

1. Introduction

Nature provides us with a wide variety of symbolic strings ranging from the sequences
generated by the symbolic dynamics of nonlinear systems to the RNA and DNA sequences or
the DLA patterns [4, 23, 27].

Entropy-like quantities are a very useful tool for the analysis of such sequences. Of special
interest are the block entropies, extending Shannon’s classical definition of the entropy of a
single state to the entropy of a succession of states [23]. In particular, it has been shown that
the scaling of the block entropies with length sometimes gives interesting information on the
structure of the sequence [13, 14].

In [16], we have shown that the estimation of the block entropies actually depends on the
way of reading, that is, on the observer. This has an immediate bearing on the ‘decoding’
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procedure, as different values of the block entropies mean different kinds and amounts of
information extracted by the symbolic sequence. By using lumping, we have established a new
decimation scheme for the symbolic dynamics of the Feigenbaum attractors of unimodal maps
[12, 22]. The coarse-grained statistical properties of the attractors have been subsequently
derived, with emphasis on the behaviour of the block entropies.

Lumping is the reading of the symbolic sequence by ‘taking portions’ (see equation (1)),
as opposed to gliding where one has essentially a ‘moving frame’. Note that gliding is the
standard convention in the literature. Reading the symbolic sequence in a specific way is also
called decimation of the sequence.

The importance of the distinction between gliding and lumping codes in genetics has
already been recognized long ago in [10], see also [20] (called at that time overlapping and
non-overlapping codes). As mentioned in [16], the realization that the kind and amount
of information of a given symbolic sequence may depend on the way that reading brings
symbolic dynamics closer to natural languages, in which the existence of distinct privileged
words conveying a precise ‘meaning’ is crucial. Moreover, in [6] it has been shown that the
estimation of the (conditional) block entropies with the usual prescription of gliding cannot
help us to distinguish between sequences with different spectral properties and different levels
of complexity.

A similar situation arises in the quite different context of supramolecular chemistry,
where certain inorganic molecules become capable of pattern recognition [19]. The inorganic
skeleton of the macromolecule is then ‘read’ by the molecules of its environment due to
stereochemical interactions. This type of ‘reading’ corresponds essentially to ‘lumping’ as
dealt with in the present paper.

The important question which arises in the light of these results is whether one can invent
some criteria which could illuminate the structure of a symbolic sequence and give us some
more specific information beyond that afforded by block entropies computed by gliding. The
objective of the present paper is to derive an entropy criterion for the particular, yet quite
important property of automaticity of the sequence.

We recall that a sequence is called automatic if it is the image of a letter-to-letter projection
of the fixed point of a set of substitutions of constant length. A substitution is called uniform
or of constant length if all the images of the letters have the same length. The term ‘automatic’
comes from the fact that an automatic sequence is generated by a finite automaton. For
instance, the Feigenbaum symbolic sequence can in an equivalent manner be generated by
the Metropolis–Stein–Stein algorithm [16, 22], or as the fixed point (σF )∞(R) of the set
of substitutions of length 2: σF (R) = RL, σF (L) = RR starting with R, or by the finite
automaton of figure 1. For more details about automatic sequences the reader is referred to
[9] and for their role in physics to [1].

In this paper we show how the procedure of reading the symbolic sequences by lumping
is useful and helps us to decimate some important automatic sequences from the mathematical
literature in a different way. In section 2 we present our main results in the form of two
propositions. In section 3 we re-examine some automatic sequences from this standpoint and
in section 4 we investigate the automaticity of some other substitutive sequences by lumping
and with an example from biology. In section 5 we draw the principal conclusions.

2. Entropy analysis by lumping

Consider a subsequence of length N selected out of a very long (theoretically infinite) symbolic
sequence. We stipulate that this subsequence is to be read in terms of distinct ‘blocks’ of
length n,
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Figure 1. Deterministic finite automaton predicted by Cobham’s algorithmic procedure. This
automaton contains two states: i and a and the function of exit F corresponds to each state by a
symbol; either F(i) = R = 1 or F(a) = L = 0. To calculate the nth term of the 2∞ sequence we first
express the number n in its binary form and then we start running the automaton from its initial
state, according to the binary digits of n. In this trip we read the symbols contained in the binary
expansion of n from the left to the right following the targets indicated by the letters. For instance,
n = 3 = (112) gives the run i → i → i so that u(3) = R = 1, while n = 9 = (10012) gives the run
i → i → a → i → i so that u(9) = R = 1.

. . . A1 . . . An︸ ︷︷ ︸
B1

An+1 . . . A2n︸ ︷︷ ︸
B2

. . . Ajn+1 . . . A(j+1)n︸ ︷︷ ︸
Bj+1

. . . (1)

We call this reading procedure lumping. We shall follow lumping in this paper.
The following quantities characterize the information content of the sequence [13, 18]:

(i) The dynamical (Shannon-like) block entropy for blocks of length n

H(n) = −
∑

(A1,...,An)

p(n)(A1, . . . , An) · lnp(n)(A1, . . . , An) (2)

where the probability of occurrence of a blockA1, . . . , An, denoted by p(n)(A1, . . . , An),
is defined (when it exists) in the statistical limit as

p(n)(A1, . . . , An)

= No of blocks of the formA1, . . . , An encountered when lumping

total No of blocks encountered when lumping
(3)

starting from the beginning of the sequence and the associated entropy per letter

h(n) = H(n)

n
. (4)

(ii) The conditional entropy or entropy excess associated with the addition of a symbol to the
right of an n-block

h(n) = H(n + 1)−H(n). (5)

(iii) The entropy of the source (a topological invariant), defined as the limit (if it exists)

h = lim
n→∞h(n) = lim

n→∞h(n) (6)

which is the discrete analogue of the metric or Kolmogorov entropy.

We now turn to the selection problem, that is, to the possibility of the emergence of some
preferred configurations (blocks) out of the complete set of different possibilities. The number
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of all possible symbolic sequences of length n (complexions in the sense of Boltzmann) in a
K-letter alphabet is

NK = Kn. (7)

Yet not all of these configurations are necessarily realized by the dynamics, nor are they
equiprobable. A remarkable theorem by McMillan [18] gives a partial answer to the selection
problem asserting that for stationary and ergodic sources the probability of occurrence of a
block (A1, . . . , An) is

p(n)(A1, . . . , An) ∼ e−H(n) (8)

for almost all blocks (A1, . . . , An). In order to determine the abundance of long blocks one is
thus led to examine the scaling properties of H(n) as a function of n.

We are now in a position to state our main result, see also [17]. Let mk be the length of
a block encountered when lumping and H(mk) the associated block entropy. The following
property then holds.

Proposition 1. If the symbolic sequence (un)n∈N is m-automatic, then

∃ko ∈ {0, 1} m ∈ N ∗ ∀ k � ko : H(mko) = H(mk) (9)

when lumpingstarts from the beginning of the sequence.

Proof. Suppose that the infinite sequence (un)n∈N taking values from a finite alphabet
A = {a1, a2, . . . , an} is m-automatic. Then, according to theorem 3 of [9], the sequence
(un)n∈N can in an equivalent manner be generated as the fixed point of a set of substitutions
of length m, plus a letter-to-letter projection. (The role of the automaton is not essential in the
sequel.) Let us call this substitution σ and write down explicitly

σ(a1) = b11b12 · · · b1m σ(a2) = b21b22 · · · b2m · · · σ(an) = bn1bn2 · · · bnm
where all b’s belong to the alphabet. Automaticity will then entail, for instance, that

un = p(σ∞(a1))

where p is a letter-to-letter projection and

p(σ(a1)) = p(b11b12 · · · b1m) = p(b11)p(b12) · · ·p(b1m) = c11c12 · · · c1m

p(σ(a2)) = p(b21b22 · · · b2m) = p(b21)p(b22) · · ·p(b2m) = c21c22 · · · c2m

· · ·
p(σ(an)) = p(bn1bn2 · · · bnm) = p(bn1)p(bn2) · · ·p(bnm) = cn1cn2 · · · cnm.

It is now a theorem that the only blocks appearing in the expression of σ∞(a1) when
lumping by blocks of length m, are the blocks b11b12 · · · b1m, b21b22 · · · b2m, · · · bn1bn2 · · · bnm.
Furthermore, one can act on σ∞(a1) by σ itself

σ∞(a1) = σ(σ∞(a1))

which leaves σ∞(a1) invariant.
In the same way, the only blocks appearing in the expression of un when lumping by

blocks of length m, are the blocks c11c12 · · · c1m, c21c22 · · · c2m, · · · cn1cn2 · · · cnm.
Furthermore, one can write

un = p(σ∞(a1)) = p(σ(σ∞(a1))).

Simply by counting the blocks when first lumping on p(σ∞(a1)) by blocks of length m
and then on p(σ(σ∞(a1))) by blocks of length m2, (note that it is the same sequence), we find
that

H(m) = H(m2).
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Following inductively the same argument and observing the expansion factor m each time
that σ appears, this last relation implies in a straightforward manner that

∀k : H(m) = H(m2) = · · · = H(mk).

In particular, we also have

H(1) = H(m)

when p is a bijection and this completes the proof. �
The meaning of proposition 1 is that for m-automatic sequences there is always an

envelope in the diagram H(n)/n versus n, falling off exponentially as ∼m−k for blocks of
length mk, k = 1, 2, . . . . For infinite ergodic strings, the conclusion does not depend on the
starting point. Similar conclusions hold if instead of a one-to-one letter projection we have a
one-to-many letters projection of constant length. In particular, we have the following result.

Proposition 2. If the symbolic sequence (un)n∈N is the image of the fixed point of a set of
substitutions of length m by a projection of constant length µ, then

∃ ko ∈ {0, 1} m ∈ N ∗ ∀ k � ko : H(µ ·mko) = H(µ ·mk) (10)

when lumping starts from the beginning of the sequence.

Typical examples of this kind of sequences are the µ · 2∞ Feigenbaum sequences [16].
As a concrete example one can indeed consider the 3 · 2∞ Feigenbaum sequence, which is
generated by the 2∞ Feigenbaum sequence with σF (R) = RL, σF (L) = RR starting with R,
after the projection of constant length µ = 3, p3(R) = RLL, p3(L) = RLR, so that

u3
n = p3(σ

F∞(R)) = RLLRLRRLLRLLRLLRLRRLLRL . . . .

For this sequence we have shown in [16] that the following decimation scheme holds for the
entropies calculated by lumping:

H(3 · 2r) = H(3 · r).
Other examples (with µ = 1) are the Rudin–Shapiro and the paperfolding sequences

which are studied below.

3. Substitutions of constant length

To illustrate the propositions derived in section 2, we shall first re-examine some substitutions
common in the mathematical literature using lumping. Note that the conditional block entropies
or entropy excess using gliding have been analysed exhaustively and computed for every n for
the Thue–Morse, the Rudin–Shapiro and the paperfolding sequences in [6], see also [2, 7].

Note also that the Thue–Morse sequence has a continuous singular spectrum, the Rudin–
Shapiro sequence has Lebesgue spectrum and the paperfolding sequence has discrete spectrum
[25, 26].

3.1. Decimation of the Thue–Morse sequence

The Thue–Morse sequence is defined as the fixed point (i.e. the infinite iteration (σ T )∞(0))
of the substitution σ T, defined on the alphabet {0, 1} by

σT (0) = 01 σT (1) = 10. (11)

Its first terms are

0110100110010110 . . .
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This sequence appears in many contexts ranging from combinatorics to chess. For a survey
see [3].

We introduce the decimation operator M̂, whose action amounts on the replacements

M̂(01) = 0 M̂(10) = 1 (12)

when lumping starts from the beginning of the sequence (essentially the inverse of the
substitution σ T, defined in (11)).

It is then evident that

M̂
n
((σ T )∞(0)) = (σ T )∞(0) (13)

which implies the following invariance property of the block entropies

HT (2k) = HT (2) = HT (1) = ln 2 (14)

in accordance with proposition 1.
Simply by counting words and observing the reduction factor 2 due to (12), equation (13)

enables us to introduce the following additional entropic decimation scheme for subsequences
of the full (infinite) Thue–Morse sequence:

HT (2 · r) = HT (r). (15)

3.2. Decimation of the Rudin—Shapiro sequence

The Rudin–Shapiro sequence is the image of the fixed point (σR)∞(a) of the substitution σ R

σR(a) = ab σR(b) = ac σR(c) = db σR(d) = dc (16)

by the projection

pR(a) = pR(b) = 0 pR(c) = pR(d) = 1. (17)

Its first terms are

0001001000011101 . . .

Following the same procedure as above, one sees that the following invariance property holds:

HR(2k) = HR(2) = 2 ln 2. (18)

Unlike the case of the Feigenbaum and the Thue–Morse sequences, we cannot introduce
a stronger entropic decimation scheme for the Rudin–Shapiro sequence as in (15). The reason
is that when we count the blocks of an odd length, many different blocks of the (σR)∞(a)
sequence may correspond to the same block of the pR((σR)∞(a)) Rudin–Shapiro sequence.
For instance, the blocks cab and dba which one encounters when reading the (σR)∞(a) by
lumping, are both projected to the block 100 of the Rudin–Shapiro sequence and the blocks
aca and bdb are projected to the block 010.

3.3. Decimation of the paperfolding sequence

The paperfolding sequence is the image of the fixed point (σP )∞(a) of the substitution σ P

σP (a) = ab σP (b) = cb σP (c) = ad σP (d) = cd (19)

by the projection

pP (a) = pP (b) = 1 pP (c) = pP (d) = 0. (20)

Its first terms are

1101100111001001 . . .
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We now have the following invariance property:

HP (2k) = HP (2) = 2 ln 2. (21)

Again, unlike the case of the Feigenbaum and the Thue–Morse sequences, we cannot
establish a stronger entropic decimation scheme for the paperfolding sequence. The reason
here is that when we count the blocks of an odd length, many different blocks of the (σP )∞(a)
sequence may correspond to the same block of the pP ((σP )∞(a)) paperfolding sequence.
For instance, the blocks abc and bad which one encounters when reading the (σP )∞(a) by
lumping, are both projected to the block 110 of the paperfolding sequence, and the blocks bcd
and adc are both projected to the block 100 of the paperfolding sequence.

3.4. Discussion of the results

Comparing equations (14), (18) and (21) we conclude that the new decimation scheme allows
one to establish some new ordering relations between block entropies, reflecting differences
in the complexity of the sequences, contrary to the use of gliding. In particular, if we compare
the invariant block entropies for blocks of length 2k we observe that

HT (2k) < HR(2k) = HP(2k). (22)

Retrospectively, this could be expected, because the self-similar tree of the Thue–Morse
sequence is certainly simpler than the corresponding structures of the Rudin–Shapiro and the
paperfolding sequences. Moreover, the self-similar tree of the Thue–Morse sequence does not
contain any projection at the end.

4. Further examples: substitutions of variable length

4.1. A first example

Consider first the fixed point of the substitution

σa(0) = 012 σa(1) = 1212 σa(2) = 00. (23)

Application of the entropy analysis by lumping shows numerically that

Ha(3) = Ha(9) = Ha(27) (24)

indicating the possibility that the sequence is isomorphic to a substitution of constant length 3.
A careful examination of the blocks appearing and of their frequencies of occurrence, shows
that as 1 is always followed by 2, the sequence can, in an equivalent manner, be considered as
the fixed point of the substitution

σb(0) = 012 σb(1) = 121 σb(2) = 200 (25)

so that it is 3-automatic.

4.2. A second example

Consider now the fixed point of the substitution

σ c(0) = 12 σ c(1) = 102 σ c(2) = 0 (26)

which in view of the theory developed in [11], is isomorphic to a substitution of constant
length, although this is not evident at first sight.

Application of the entropy analysis by lumping shows numerically that

Hc(2) = Hc(4) = Hc(8) = Hc(16) = Hc(32) (27)

indicating the possibility that the sequence is isomorphic to a substitution of constant length 2.



9238 K Karamanos

0 10
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

H
(n

)/
n

Figure 2. Entropy per letter h(n) as a function of n, measured by lumping, obtained numerically
by the first 2584 terms of the Fibonacci sequence. The same result is obtained with gliding. We
observe a monotonic decay, which is the signal of non-automaticity in view of proposition 1.

A careful examination of the blocks appearing and of their frequencies of occurrence,
shows that the sequence can, in an equivalent manner, be considered as the fixed point of the
substitution

σd(a) = ab σd(b) = ca σ d(c) = cd σ d(d) = ac (28)

projected by

hd(a) = 10 hd(b) = 21 hd(c) = 20 hd(d) = 12. (29)

Thus application of entropy analysis by lumping reveals the hidden structure of the sequence.

4.3. Decimation of the Fibonacci sequence

An example of a sequence which is substitutive but does not satisfy the entropy condition
(9) (so that it is not automatic), is the Fibonacci sequence, defined as the fixed point of the
substitution

σFi(0) = 01 σFi(1) = 0. (30)

For this sequence we have found numerically that the entropies calculated by lumping are
equal to the corresponding entropies calculated by gliding, which are known [5], see also
figure 2.

4.4. Decimation of the Chacon sequence

Another interesting substitutive sequence has been introduced by Chacon in [8], see also [15],
by juxtaposition of blocks Bn with the following rule

B0 = 0
(31)

Bn+1 = BnBn1Bn.
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Figure 3. Entropy per letter h(n) as a function of n, measured by lumping, obtained numerically
by the first 9840 terms of the Chacon sequence. We observe a non-monotonic decay for values of
n being in arithmetic progression of 9, n = 9k, k � 2.

The resulting sequence reading

0010001010010 . . .

is invariant under the replacements 0 → 0010, 1 → 1 and it is a typical example of a system
which is weakly mixing but not strongly mixing. It has thus a special place in the ergodic
hierarchy.

Application of entropy analysis by lumping to this sequence shows numerically that the
block entropies present a non-monotonic behaviour forn = 9k, k � 2, that is, for an arithmetic
progression of 9 (see figure 3). This quite surprising fact is probably due to the special property
of the Chacon sequence to have a letter 1 in all positions n = 3k, k � 1. One can indeed show
that the unity following the two Bn’s in the definition of the Chacon sequence is in position 3k

from the beginning of the sequence.

Proof. For k = 1, it holds. Let us suppose that it holds for k = t. Then for k = t + 1, the unity
following the two Bt’s is in position

2
(
3t + 1

2 (3
t − 1)

)
+ 1 = 3t+1. �

This might be a good starting point for further studies of the entropic behaviour of this
sequence.

5. Perspectives

Finally, the analysis of DNA and RNA sequences has attracted considerable interest these last
years; see, for instance, [21]. To show how our diagnostics are applied to such cases, we have
considered a part of the complete genome of the virus lambda fage (a coding sequence) and
of the human beta globin region of chromosome 11 (a non-coding sequence with coding only
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Figure 4. Entropy per letter h(n) as a function of n, measured by lumping, obtained numerically
by the first 9780 basis proteins of the virus lambda fage (upper curve), and the human beta globin
region of chromosome 11 (lower curve). We observe a monotonic decay, which is the signal of
non-automaticity in view of proposition 1. Note that a sequence of the same length, which is a part
of one of the above-considered automatic sequences, gives non-monotonic behaviour.

3%). Figure 4 depicts the result of preliminary investigations, which strongly suggests that
there is no small length automaticity in both these sequences.

Another interesting perspective is opened by the use of different automaticity measures,
as in [24, 28, 29]. These measures could characterize the ‘distance from being automatic’, in
some sense, and they will soon be the subject of further studies.

6. Conclusions

In this paper we derived a new diagnostic for automaticity. When one disposes of an unknown
symbolic sequence and applies the entropy analysis by lumping, then if the sequence does not
obey the invariance property predicted by the propositions of section 2, it is certainly non-
automatic. Conversely, if one observes the adequate invariance property, then the sequence is
a candidate to be automatic, or to be the image of the fixed point of a set of substitutions of
constant length by a projection of constant length.

We have analysed the block entropies of some well-known automatic sequences from this
standpoint and found that, under the convention that the sequence is to be read in terms of
hypersymbols, new relations show up and the entropies satisfy some well-defined invariance
properties.

Although the results are relatively straightforward to obtain, we believe that they deserve
attention because of their very broad range of applicability, from theoretical information
science to telecommunications and biology.

To the author’s knowledge, the question of a functional relation between the block
entropies when gliding and when lumping for an arbitrary sequence has not yet been addressed
in the literature. A plausible conjecture supported by numerical work could be that the block
entropies calculated by gliding form an upper bound for the block entropies calculated by
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lumping. It is also interesting to mention that for the special case of the Feigenbaum sequence,
we have calculated exhaustively in [16] the block entropies by lumping and related them to
the block entropies by gliding.

Acknowledgments

I am indebted to J-P Allouche and G Nicolis for useful discussions and support. I also thank
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